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OBJECTIVE: To investigate the

ja] correlation be- or grading, and IHC-stained specimens were ana-
tween estrogen receptor (ER Q)

ind histologi zed for ER-status estimation. Spearman’s correlation
grade in breast carcinomas test was used to estimate the relation between histologic
STUDY DESIGN: Clinic grade and both the physician’s ER-status assessment and
opsies of infiltrati cinomas that a computer system’s ER-status evaluation. Moreover, a
hematoxylin-eosin ( munohistochemically pattern recognition system was developed that takes as
specimens were used for input textural features extracted from ER-expressed nu-

bcessing and Analysis Group, Laboratory of Medical Physics, School of Medicine, University of Patras; Depart-
tversity Hospital of Patras, Rio; and Department of Medical Instruments Technology, Technological Educational

sos and Kalatzis are Postdoctoral Researchers, Department of Medical Instruments Technology, Technological Educational In-
stitute of Athens.

Dr. Cavouras is Professor, Department of Medical Instruments Technology, Technological Educational Institute of Athens.
Dr. Ravazoula is Medical Doctor, Department of Pathology, University Hospital of Patras.

Dr. Nikiforidis is Professor, Medical Image Processing and Analysis Group, Laboratory of Medical Physics, School of Medicine, Univer-
sity of Patras.

Address correspondence to: Spiros Kostopoulos, M.Sc., Laboratory of Medical Physics, School of Medicine, University of Patras, 26504
Rio, Greece (skostopoulos@upatras.gr).

Financial Disclosure: The authors have no connection to any companies or products mentioned in this article.

0884-6812/09/3104-0187/%$18.00/0 © Science Printers and Publishers, Inc.
Analytical and Quantitative Cytology and Histology® 187



188 || ikesteptitton et [
18811 eetopaitn il

clei and outputs the grade of the tumor. The system was
evaluated using an external cross-validation procedure
in order to assess its generalization to new cases.
RESULTS: Spearman’s correlation revealed that the his-
tologic grading was inversely related to both the physi-
cian’s ER-status assessment and to the computer sys-
tem’s ER-status evaluation. The pattern recognition
system was able to predict histologic grade with 95.2%
accuracy. Important textural nuclear features were
proven—the skewness, the angular second moment and
the sum of entropy.

CONCLUSION: ER-expressed nuclei texture was found
to contain important information related to histologic
grade. (Anal Quant Cytol Histol 2009;31:187-196)

Keywords: cancer, breast; estrogen receptors; histo-
logic grade; pattern recognition.

Studies concerning global cancer statistics indicate
that breast cancer is the most frequent type of can-
cer among women.! To help with the diagnosis of
breast cancer, many biologic factors have been pro-
posed for their prognostic and predictive value.
Among these factors, histologic tumor grade and
estrogen receptor (ER) status have been note,
their importance and usefulness in clinical
management.? Histologic grading is carrie

stained specimens.3 ER statusd
centage of expressed nuclei ¢

a per-

dito’discover

and IHC-staired
specimens—that is, whether histologic
tumor grade relates to atus.5 Such a relation-
i mportant in the various treatment
| with breast tumors.® To this
dings have suggested that there
tially meaningful inverse correla-
n breast tumor grade and ER status. Ac-
Desai et al® have reported a decrement in
when the tumors are poorly differentiat-
ed. Zafrani et al® have found a strong correlation
between ER status and histologic grade (p <104).
Fuqua et al” and Vagunda et al® have shown that
histologic grade is inversely associated with ER sta-
tus (r, = -0.40, p<0.001 and r, = 0.37, p=0.036, re-
spectively). Baqai and Shousha® have also reported
similar findings while working with ductal carcino-
mas in situ.
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These conclusions imply that higher grade tu-
mors are more likely to respond poorly to antiestro-
gens compared with lower grade tumors.® Howev-
er, the quantification of ER status presents certain
weaknesses. First, there is a lack of co
among experts regarding the protocol
lowed for calculating the ER status. In

should be the percentage of
clei. Other clinical groups al
ation the nuclei staining i

ally counting pos-
ical practice a gross

aluation of ER status, which
by previous studies as the key
) ssing the eQrrelation between ERs
grade, is pron e physician’s subjec-
ation. Ther g more reliable methods
eded.

alternati @to estimate the ER status in a
e objectiv nner. Such a method has been
presented by dur group elsewhere.!' Consequently,
we havefged this method to confirm the correla-
tion o status and histologic grade. Another in-
te alternative is to focus directly on the in-
h ’ﬁe tproperties of ERs inside the nuclei—namely,
Atook directly into the texture of expressed ER nu-

inspired by the established connection of ER ar-
rangement and distribution (i.e., texture) to chro-
matin alterations.’?-15 Taking into account that
chromatin alterations reflect the grade of breast tu-
mors,'6-21 directly associating the texture of ex-
pressed ER nuclei with tumor grade could be use-
ful. Following this line of reasoning, a pattern
recognition system was developed to automatically
predict breast tumor grade based on textural fea-
tures extracted from the nuclei of IHC-stained im-
ages. To the best of our knowledge, this has never
been previously studied. The proposed system uti-
lizes a probabilistic neural network classifier and
was evaluated using an external cross-validation
procedure in order to assess its generalization to
new cases.

histochemi—oo lei. The motivation for such an attempt has been

Material and Methods
Clinical Material and Evaluation

Archival material from 109 breast cancer cases of
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Figure 1 (A) Digitized frame from an H-E-stained specimen. (B) Digitized frame fro

women who had undergone biopsy between 2000
and 2007 were collected from the Department of
Pathology, University Hospital of Patras, Rio, Greece.
All tumors were infiltrative (invasive) ductal carci-
nomas. For each case, H-E-stained and IHC-stai
specimen tissues (Figure 1A and B, respe
were generated from formalin-fixed, para
embedded biopsy section tissues.
ER expression was assessed on I
imens, following the clinical routi

of ER-

alue of E@
ase as having posi-
was performed by
t taking into considera-

pression for charac
tive ER status. IHC

ical assessment was carried out
st (P.R.) on H-E-stained speci-
e World Health Organization rec-
ons and employing the Elston and Ellis
eme.> One month after initial assess-

histopathologist for a second reading. In cases with
intraobserver variation, the physician and another
histopathologist reviewed the slides on a multi-
headed microscope (Olympus BX41; Olympus,
Tokyo, Japan) in order to reach a consensus con-
cerning tumor grade. Thirteen cases were omitted,
10 because their ER-stained slides could not be re-
trieved from the archive and 3 because of muddy or

aining. Thus m@f 96 cases were used

u processing

®

Computer-Assist uatlon

each of t ases, 5 nonoverlapping images
(13001030 it) were selected within regions
on Wth e histopathologist’s clinical assessment
(Figure 1B). Selected images were ac-
qut\ t a magnification of x400 using a Zeiss
tar-Plus light microscope (Zeiss, Gottingen,
many) and a Leica DC 300F color video camera
eica, Wetzlar, Germany). Each digitized image
was stored in an uncompressed tagged image for-
mat file (TIFF).

A schematic representation of this study is pre-
sented in Figure 2. The first goal was to confirm
whether ER status correlated with histologic grade.
To do this, we examined how strong the correlation
of the visually estimated ER status was with respect
to the histologic grade assigned from H-E-stained
specimens. To confirm this correlation in more ob-
jective manner, a computer-based method was im-
plemented that automatically quantified the ER
status on IHC-stained images. Accordingly, a clus-
tering algorithm was used to segment nuclei from
surrounding tissue, and a supervised classification
algorithm was employed to discriminate nuclei ei-
ther as ER nonexpressed (Figure 3A) or ER ex-
pressed (Figure 3B). The latter method has been de-
scribed in detail by our group elsewhere.!!
Correlation for both cases was computed using the
Spearman’s correlation coefficient.??
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Classification Into Crades ur raction. Featfges expressing the distri-
A pattern recognition system (PR system) was de- bu and arrange of ERs in nuclei were cal-
signed in order to classify breast cancer cases to ma d for each pressed nucleus. Accordingly,
lignant categories of grade I (low), grade II (i nucleus represented by a 16-dimensional
mediate) and grade III (high), using infor feature vect eatures (mean value, SD, skewness
from textural features extracted from only the and kurtgdi) were calculated from the 3-dimensional
expressed nuclei. The design of the PR€ystem co (3-D) us’s histogram (corresponding to red-
sisted of 2 stages, a feature extracti a system grey ue [RGB] channels) and 12 features??® (an-

S Second moment, contrast, correlation, auto-

design and evaluation (classifier design PR sys- g%r
Qo elation, sum of squares, inverse difference

tem evaluation).

Figure 3 (A) ER-nonexpressed nuclei. (B) ER-expressed nuclei.
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moment, entropy, sum of entropy, sum average,
sum variance, difference variance and difference
entropy) from the 3-D co-occurrence matrix.?# Fi-
nally, each case was represented by a 16-dimensional
feature vector, in which each feature was the aver-
age of the case’s ER-expressed nuclei, picked from
the case’s 5 selected images.

2-Dimensional Co-Occurrence Matrix. When consid-
ering a grayscale image I(x, y), the co-occurrence
matrix?3 encoded the frequency of appearance of all
possible gray-value pixel pairs in a particular orien-
tation vector D, with D = (d, 0) | (Ax, Ay), where d
was the interpixel distance, 6 € {0°, 45°, 90°, 135°,
180°, 225°, 315°} and (Ax, Ay) was the point dis-
placement in the Cartesian space. According to
Mahmoud-Ghoneim et al,?* the joint probability
function for each pixel pair in the co-occurrence ma-
trix was calculated as:

K-Ax L-A

Y Y S

x=1 y=1

P3(nn)

1
R @

where & (11,n) = 1,3nnIC)=nAl@)=n" ,
0, otherwise

where¢=(x,y), ¢’ = c+D= (x + Ax, y + Ay) wit

1,2,..K,y=12,...Land K, L were the i e dime

sions, (n,n") were the gray values quantized
image and R is the total number ofpo neigh-
boring pixel pairs. Thus R d both”on the

ultichannel co-occurrence matri-
ode the frequency of appearance of all
el pairs in different channels or bands.

ming that a color image with 3 channels (i.e.,
RGB or Lab) could be seen as a 3-D image and could
be expressed as a function of f(7) = f(x,y,z), the joint
probability function for each pixel pair is given by:

K-Ax L-Ay M-Az

P3O =2 T T X Su)

x=1 y=1 z=1

®)

1, Inn"I(C) = n A f(M) =n’

where d(nn’) = \
0, otherwise
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whereD = (d,0,d.)f (Ax,Ay,Az) is the orientation vec-
tor representing the point displacement in the 3-D
axis and R = (K-Ax)(L-Ay)(M-Az). Similarly to
equation 2, we have:

CMZn+1, n'+1) = PE(nn’) 4)

Thus, the 3-D co-occurrence matrix
pressed as:

CM,,, = CMg+ CM5 )
dimensions
image (i.e., RGB
eatures extracted

However, it has to be clarifi
refer to the 3 channel
or Lab)?5 and not to
from volumetri
System Design an ation. To assess the per-
osed method and provide a
timate of the prediction error
cross-vadidation (ECV) method
26,27 Accordi , the ER-expressed

s randoml arated 10 times into 2
s: a training &@t (70% of the data) and a

subset ( of the data). Each time, the
s used for designing the classifier
and the test@Sybset was used for assessing its pre-

dictive R@rmance on new ER-expressed data.

)

Cla Design. Classification was performed by
s of the probabilistic neural network (PNN)
sifier.?® The PNN is implemented by a 4-layer
input, pattern, summation and output layers),
feed-forward and 1-pass structure and encapsulates
the Bayes’ decision rule together with the Parzen es-
timators of the data’s probability distribution func-
tion. The discriminant function of the PNN for class
k was:

————}————— 1 gf eX}) -
Qm@2od N, =
where o is the spread of the Gaussian activation
function that was experimentally selected. The op-
timum value of the adjustable parameter o of the
Gaussian activation function was determined to be
0.24. N, is the number of pattern vectors of class k, d
is the dimensionality of pattern vectors and x,, is the
i-th pattern vector of class k. The unknown pattern
vector, x, is classified to the class with the highest
discriminant function value. An exhaustive search
feature selection procedure was employed to deter-
mine the feature vector with the highest discrimi-
natory accuracy. Accordingly, each feature vector

(= x)T(x = %)
202

(6)

Di(x) =
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Table I Histopathologist’s Assessment of ER Status and
Histologic Grading

Grade Cases ER+ ER-

| 28 24 4

Il 29 27 2

1 39 25 14

Total 96 76 20

combination was used to design the PNN classifier
utilizing the leave-1-out method.?”

For comparative purposes, the nearest neigh-
bor,?® the support vector machine (SVM)3° and the
logistic regression3! classifiers were used. Addi-
tionally, the performance of the system using alter-
natively 2-D or 3-D co-occurrence matrix features
was investigated. Finally, apart from RGB, the Lab
color space3233 was used again for comparative
purposes.

Results

Table I shows the distribution of cases according to
their grading and the ER-positive and ER-negative
status, as evaluated by the histopathologist. As
be seen from Table I, 79.2% (76 of 96) of thé
had an ER+ rate (expressed). While low grade ca

cases.

th increasing histologic grading
ed from Figure 4; the median of

easing histologic grading.

The classification performances of the PNN clas-
sifier employing the extracted ER-textural features
over the course of 10 repetitions for the ECV proce-
dure for the RGB and Lab color space are detailed in
Tables II and III, respectively. The last column in
Tables IT and III, which contain the best feature vec-
tor combination at each repetition, demonstrate
that the best feature vector combination size varied

Analytical and Quantitative Cytology and Histology ®

between 2 to 4 features. Moreover, the overall as-
sessment of the accuracy to new data, as it might be
obtained from the classification results employing
the ECV, was 92.8%, with grade I scoring at 95%,
grade Il at 95.56% and grade Il at 87.5% for
color space. The Lab color space classifi
sults were 95.2%, with grade I at scori

frequently appearing featu
second moment and surgeof e
classifier is shown in re 5,
agram with the 3 grading c

ich is a scatter di-
s appearing well
¢y in discriminating
iate and high grades ranged
ean value at 96.8%.
e comparative results under
es, using either 2-D or 3-D co-
features Qd different classifica-

@‘\\’0

udies343° have been conduct-
I more accurate methods of im-
diagnosis, treatment and prognosis.
ave demonstrated the usefulness of
ures related to texture, morphology and
120,36 using either commercial3”38 or re-
software packages.36:39/40

he aim of this investigation was to quantitative-

assess the correlation between ER status and his-
tologic grade in an objective manner. Recent stud-
ies> have shown that a strong correlation exists
between ER status and histologic grade and that

icant resea
n the sear
proving can

sh
S
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Figure 4 Boxplots of ER status and histologic grading. For each
grade 2 box plots are illustrated, 1 corresponding to ER status
visually estimated by the histopathologist and the other to
ER-status automatically assessed by a computer-based system.



Volume 31, Number 4/August 2009

| |W|

HElEH ekttt With Hi

Table Il The PR-System’s Classification Accuracy for 10 Repetitions of the ECV and the Corresponding Best Feature Combinations Under
the RGB Color Space

Accuracy (%)

ECV repetition Overall Grade | Grade 11 Grade 111 Feature vector
1 92 100 100 75

2 96 100 100 87.5

3 92 87.5 100 87.5

4 92 87.5 100 87.5

5 96 100 100 87.5

6 100 100 100 100

7 88 100 88.9 75

8 96 87.5 100 100 kew, sentr
9 84 100 66.7 87. asm, svar

10 92 87.5 100 skew, sentr
Average 92.80 95.00 95.56
SD 4.54 6.45 10.73

asm = Angular second moment, con = contrast, corr = correlation, idm = inverse difference moment, krt =
skew = skewness, ssq = sum of squares, svar = sum variance.

= mean value, sentr = sum of entropy,

this correlation is important in the various treat- : e ER stat ay vary significantly
ment strategies for breast tumors. These studies < % strongly affected by
have lead us to investigate this correlation. The first t nd the expert’s experi-
goal of this study was to confirm that the ER status, enceA215 this migh be the most reliable mea-
as it is visually estimated by the histopathologist, is or studyin a correlation.

g us we fo directly on the texture of ex-

are in line with those presented in the litera pressed ER @;lei, which has been shown to vary

indicating that a correlation does exists (rg = — with ch alterations.'>1> To investigate the
p <0.001) and that the ER status is inv C hidde loglc information imprinted as texture
to tumors grade. To confirm this ion i on* xpressed nuclei, a PR system was devel-
more objective manner, we built a‘€om T 0 that takes as input textural features and out-
system*10 that automatically %s the grade of the tumor. The overall accuracy of

on IHC-stained images, a
stronger inverse correlafi

bo%e system was 95.2%.

The PR system revealed 2 important conclusions.

Table Il The PR System's
the Lab Color Space

fication Accuracy for 10 Repetitions of the ECV and the Corresponding Best Feature Combinations Under

Accuracy (%)

ECV repetiti Overall Grade | Grade Il Grade 111 Feature vector
1 96 87.5 100 100 SD, skew, asm
92 87.5 100 87.5 SD, asm, con
3 100 100 100 100 skew, krt, asm, con
4 96 100 100 87.5 mv, SD, sentr
5 96 100 100 87.5 krt, con
6 100 100 100 100 skew, corr, idm
7 88 75 100 87.5 SD, corr, svar
8 96 100 100 87.5 skew, asm, sentr
9 92 100 88.9 87.5 krt, asm
10 96 100 100 87.5 skew, krt, ssq, sentr
Average 95.2 95 98.89 91.25
SD 3.67 8.74 3.51 6.04

asm = Angular second moment, con = contrast, corr = correlation, idm = inverse difference moment, krt = kurtosis, mv = mean value, sentr = sum of entropy,
skew = skewness, ssq = sum of squares, svar = sum variance.
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-0.2 igure 5 Scatter diagram of
0 0.2 0.4 0.01 \%3 most frequently
appearing features (skew, asm,
sentr) at each repetition of the
skewness ECV.
First, it is possible to predict tumor grade not bee 1ously reported in literature.
IHC-stained specimens; until now, st tum Th stem classified grade I tumors with 95%
grading has been exclusively perf on H-E- acct\t , grade II with 98.89% accuracy and grade
stained specimens. Second, the texttire ressed %l 91.25% accuracy. It is interesting to examine
ER nuclei strongly correlates ow these results relate to ER status. The ER status

tumor grade; Q
previously, only the ER stat ed to investi; O verages of grade I, II and III tumors were ~77%,
gate any such possible 6 us we havo ~60% and ~39%, respectively. The respective vari-

seen through 3 different nts that thére s ations for each malignancy group ranged from 65%

a meaningful corr een ER status and to 90% for grade I, 40% to 80% for grade II and 0%
tumor grade. The fir ER status estimated to 78% for grade III. These data concern those cases
by the histopathologist, Which has been already re- that fall inside the box plots shown in Figure 4. It is
ported in Ji e,59 the second utilizes a more possible that the significant variation in ER status
objective on of ER status through a custom- that was observed in our data for grade III tumors
er-based method and the third was due to the existence of inherent tumor hetero-

tire of expressed ER nuclei. As far as geneity.41-43 Another observation that reinforces

he second and third perspectives have this belief is that classification accuracy for grade III

Table IV Comparative Results Illustrating the Overall Performance of the System Under Different Color Spaces, Using 2-D or 3-D Features
and Different Classifiers

Logistic Nearest
Features Color space PNN (%) regression (%) SVM (%) neighbor (%)
2D Grayscale 93.0+£5.2 89.5+7.4 92.8+6.2 93.2+54
3D RGB 92.8+4.54 90.4+5.4 93.2+2.7 90.8+4.6

Lab 95.2+3.67 92.4+5.2 94.4+2.8 93.6+£3.2
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tumors was the lowest (91.25%) as compared with
grade I (95%) and grade II (98.89%) tumors; higher
grade tumors are usually composed of various cell
populations of different grades, which can cancel
out criteria that might be used to establish distinct
boundaries for the separation of different grade tu-
mors.#1-43 This may explain the reduced perfor-
mance of the PR system for the recognition of grade
III tumors. For grade I and II tumors, heterogeneity
dominates to a lesser extent, allowing the PR sys-
tem to be more precise and effective (with an accu-
racy of 98.89% and 95%, respectively).

It has to be stressed that the proposed system was
validated using an external cross-validation
process. The selection of the validation process is an
important task; there are few validation processes
that allow for the extraction of conclusions regard-
ing the generalization of the methods used. Previ-
ous studies?®-?” have demonstrated that cross-
validation samples should be kept external to the
feature selection process. Moreover, in a previous
study?® researchers also assessed several tech-
niques for estimating the generalization error. They
showed that the external cross-validation error is
among the most unbiased estimators of the ge
ization error. Hence, using the external
validation method enables us to argue that re
(overall accuracy 95.2%) are indicativ he gene
alization ability of the system to ne data. This
adds an additional value to the restlts.

However, ECV cannot be
cific PR system’s design wi
With this in mind, a pgssi

tal could in

ntly appearing
fication accuracy at
: In our study, such fea-

tures that optimize
each repetition of the

(Table II). Skewness describes
mmetry and encodes intensity

A by-product of this research is that it seems pos-
sible to perform grading directly on IHC-stained
images containing positively expressed ER nuclei,
with a relatively high accuracy of 95.2%. However,
a tumor might not express any ER, though it resides
at a specific malignancy level. Under such condi-
tions, grading is only feasible on H-E-stained spec-
imens. A very interesting extension of this study

lar features
de31gn1ni Q

e

Itiite With Histolbeic Gradd

would be to investigate if the combination of tex-
tural information extracted on both IHC-stained
and H-E-stained specimens might improve the
grading of breast tumors.
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