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OBJECTIVE: To develop and validate a computer-based
approach for the quantitative assessment of estrogen re-
ceptor (ER) status in breast tissue specimens for breast
cancer management.
STUDY DESIGN: Microscopy images of 32 immuno-
histochemically (IHC) stained specimens of breast cancer
biopsies were digitized and were primarily assessed for
ER status (percentage of positively stained nuclei) by a
histopathologist. A pattern recognition system was de-
signed for automatically assessing the ER status of the
IHC-stained specimens. Nuclei were automatically seg-
mented from background by a pixel-based unsupervised
clustering algorithm and were characterized as positive-
ly stained or unstained by a supervised classification al-
gorithm. This cascade structure boosted the system’s
classification accuracy.

RESULTS: System performance in correctly characteriz-
ing the nuclei was 95.48%. When specifying each case’s
ER status, system performance was statistically not 
significantly different to the physician’s assessment
(p = 0.13); when ranking each case to a particular 5-scale
ER-scoring system (giving the chance of response to en-
docrine treatment), the system’s score and the physi-
cian’s score were in agreement in 29 of 32 cases.
CONCLUSION: The need for reliable and operator inde-
pendent ER-status estimation procedures may be served
by the design of efficient pattern recognition systems to
be employed as support opinion tools in clinical practice.
(Anal Quant Cytol Histol 2008;30:218–225)
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According to the World Health Organization, the
most frequent neoplasm in females is breast can-
cer.1 Breast cancer cells can express a variety of hor-
mone receptors. Estrogens are hormones that affect
breast tissues (normal or malignant) by binding to
estrogen receptors (ERs) and by causing cells to
grow or divide. Even though the latter is a normal
route of breast development, it can potentially lead
to the development of cancer cells.2 Therapeutic
management and treatment of women with breast
cancer cells expressing ERs (positive ER-status) dif-
fers from those with negative ER status.2 Conse-
quently, ER status has been proposed as a biologic
factor to predict the clinical response of hormonal
therapy.3

Traditionally ER status has been assessed by bio-
chemical methods. Recently the method of choice is
immunohistochemistry (IHC).4 According to rec-
ommendations by the American Society of Clinical
Oncology, ER status should be reported as the per-
centage of positive nuclei.5 The histopathologist mi-
croscopically assesses ER status by inspecting the
concentration of positively stained nuclei within
areas of high positively stained nuclei. Those areas
are characterized as high-power fields or fields
most representative for ER-staining.6 It is apparent
that, because such assessment might be affected by
the physician’s experience, an objective quantifica-
tion of the ER status might be of value in reducing
interobserver and intraobserver variability.5

Previous studies5-10 have employed computer-
aided image analysis methods for quantifying the
ER-status of breast cancer. Diaz et al5 used a com-
mercially available image analysis system (QCA,
Lake Bluff, Illinois, U.S.A.) for determining the per-
centage of positive IHC-stained tumor cells by
using colorimetric algorithms. Bejar et al9 used a
different image analysis system (Wscannary, Galai
Corp, Migdal-HaEmek, Israel) for measuring the nu-
clei’s optical density and computing a weighted
score for separation of ER-positive from ER-negative
breast carcinomas. Both Diaz et al5 and Bejar et al9

achieved good agreement with observers’ score (κ =
0.84 and 0.89, respectively). Mofidi et al6 and Lehr
et al10 employed functions of Photoshop image-
processing software (Adobe Systems, Mountain
View, California, U.S.A.) to assess ER status—Mofi-
di et al6 by evaluating the H-score index, a combi-
nation of positively stained nuclei percentage and
of nuclei staining intensity, and Lehr et al10 by eval-
uating the immunocytochemical index. Their find-
ings showed acceptable (r = 0.84) to marginal

(r = 0.76) correlations against the pathologists’ eval-
uation. Kohlberger et al8 used color thresholds to
determine the proportion of stained nuclear area,
and they have reported marginal correlation
(Spearman’s r = 0.64) with physicians H-score.
Schnorrenberg et al7 proposed a different approach,
based on pattern recognition for simulating the way
that pathologists evaluate individual cells. They im-
plemented a modular neural network algorithm
using 2 features—average intensity and texture
measure—for classifying nuclei, and they have as-
sessed the ER status by the H-score index, achieving
the highest overall accuracy (84%) against the
physicians’ evaluation. It is obvious that any effort
to improve the precision of computer-aided ER 
status quantification would require more rigorous
image analysis methods. 

The contribution of the present study lies in the
employment of state-of-the-art pattern recognition
methods and color textural features to design a
complex nuclei classification system for ER status
quantification. In particular, the complexity of the
design lies in interfacing an efficient unsupervised
clustering algorithm, the fuzzy c-means (FCM),11

with a fast and optimally designed classifier, the
Probabilistic Neural Network (PNN),12 to locate
and discriminate with accuracy either positively or
negatively stained nuclei from background tissue,
thus leading to automatic assessment of the ER sta-
tus through the concentration of positive nuclei
present in the IHC-stained specimen. 

Material and Methods
Material

Thirty-two formalin-fixed, paraffin-embedded, IHC-
stained biopsy specimens of breast cancer were col-
lected by an experienced histopathologist (P.R.)
from the archives of the Department of Pathology of
the University Hospital of Patras, Rio, Greece. For
each specimen, the ER expression was semiquanti-
tatively assessed following a simplified version of a
clinical scoring protocol13 (Table I). Accordingly,

Table I Scoring System Employed in the Present Study

Proportion of
Score nuclear staining (%)

0 0–5
1 6–10
2 11–33
3 34–66
4 67–100
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following the daily clinical routine, the concentra-
tion of positively stained nuclei—brown colored—
to the total number of positively and negatively
stained nuclei—blue colored—was estimated by 
visual inspection of microscopic fields, in which a
large number of positively stained nuclei existed.
Percentage scores were then referred to the clinical
scoring protocol for labeling each case’s chance of
response to endocrine treatment, as shown in Table
I. The cut-off value for positive status was set at 5%. 

Image Acquisition

From the same specimen regions on which the
histopathologist’s clinical assessment was based, 5
non-overlapping images (1300 × 1030 × 36 bit) were
selected on average from each case and were digi-
tized at a magnification of × 400 using a Zeiss 
Axiostar-Plus light microscope (Zeiss, Göttingen,
Germany) and a Leica DC 300F color video camera
(Leica, Wetzlar, Germany). Images were acquired
using the Leica IM50 image manager software that
accompanied the Leica microscope. Parameters re-
garding exposure time, image amplification, image
contrast, γ value and white balance were automati-
cally adjusted by the provided software. To allevi-
ate light fluctuations, the microscope was turned on
a few minutes before image capturing, in order to
reach thermal equilibrium.

System Design 

The system implemented the FCM clustering algo-
rithm in conjunction with the PNN algorithm to
form a cascade unsupervised-supervised classifica-
tion structure as illustrated in Figure 1. The cascade
structure comprised 3 basic stages: nuclei segmen-
tation, feature extraction, and nuclei classification.
The result was automatic identification of positive-
ly and negatively stained nuclei, quantification of
the specimen’s ER-status from the concentration of
positively stained nuclei, and reference to a scoring
scale employed by physicians in clinical practice.

Nuclei Segmentation by FCM. The original RGB
image (Figure 2) was temporarily converted into
the L*a*b* color space (see Appendix). L* represents
the difference between light and dark intensities; 
a* represent the difference between redness and
greenness; and b* represents the difference between
blueness and yellowness.14 By this approach, chro-
maticity was separated from intensity.15 Conse-
quently images were transformed from RGB into 
2-color images, channels a* and b*, rendering infor-
mation processing easier.

The FCM unsupervised clustering algorithm,
which requires no training, was implemented for
partitioning the image-pixels into 3 clusters or
classes—pixels accounting for brown nuclei, pixels

Figure 1 Schematic
representation of system
design. L* = difference
between light and dark
intensities, a* = difference
between redness and
greenness, b* = difference
between blueness and
yellowness, RGB = 
red-green-blue.
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accounting for blue nuclei and pixels accounting for
the remaining tissue background. The FCM follows
an iterative procedure in which image-pixels, rep-
resented by 2 features (intensity of a* and b* chan-
nel), get fuzzy allocation to a cluster according to
distance metric criteria. Features were normalized
to zero mean value and unit variance17 according to
relation (equation 2).

The algorithm iteratively facilitates for mini-
mization of the objective function (equation 1)

J(M,C) = mw
ij||xi – cj||2 (1)

to provide solution for the membership function
matrix M and cluster center matrix C, where mij

∈{0,1} is the degree of membership of xi image-pixel
in the cluster j, ||xi – cj|| is the Euclidean distance
between j-th cluster center and i-th image-pixel, and
w∈[1,∞] is the fuzzy exponent, which determines
the degree of fuzziness. The algorithm converges
when |mk

ij
+1 – mk

ij|< ε, where ε ∈(0,1) is a termina-
tion criterion and k is the iteration steps. 

Because the most populated cluster correspond-
ed to tissue-background in all cases, it could be eas-
ily isolated and discarded. Image-pixels residing in
the other 2 clusters were used to form 2 new images
with potentially either brown or blue pixels (Figure
3). Both brown and blue images were further proc-
essed for eliminating noisy regions by morphologic
operators, which comprised image closing (erosion
followed by dilation), fill holes, and image opening
(dilation followed by erosion),16 and by a size filter
for retaining only objects (nuclei) larger than 300

pixels. Finally, images were combined (logical and
operation) with the original RGB image for obtain-
ing the final segmented image, in which each seg-
mented nucleus had RGB texture (Figure 3). These
images and the original were presented to the ex-
pert histopathologist for evaluating the correctness
of nuclei identification at this preliminary stage 
of nuclei labeling. The result of such an assessment
led us to employ more drastic measures, such as 
unsupervised-supervised classification in a cascade
mode (FCM/PNN).

Feature Extraction. Five features—mean value, SD,
skewness, kurtosis and color range—were calculat-
ed from each R, G and B nucleus intensity histo-
gram, thus forming a total of 15 features of texture
for each nucleus. Features were normalized to zero
mean value and unit variance,17 considering all
brown and blue nuclei, according to relation (equa-
tion 2)

x̃i = (2)

where xi and x̃i are the feature vectors prior to and
after the normalization, μ is the mean value of each
feature and s is the SD of each feature.

Nuclei Classification by PNN. Segmented nuclei,
represented by a 15-dimensional feature vector,
were fed into an optimally designed PNN classifier,
which was used for discriminating between brown
and blue nuclei. The PNN discriminant function is
given (equation 3):

gj(x) = (3)

where σ is the smoothing parameter (experimental-
ly determined to be 0.27), N is the number of nuclei
(patterns or feature vectors) forming class j, d is the
feature vector dimensionality, xi is the i-th feature
vector of class j, and x is the unknown feature vec-
tor. The PNN classifies the input vector to the class
with the highest decision function. 

The PNN classifier was designed using an ade-
quate number of nuclei, randomly chosen from the
first 22 cases in Table II, which the expert physician
had previously classified as brown (714) or blue
(1,117). These nuclei constituted the gold standard
dataset that was employed in the optimum design
and evaluation of the PNN by means of the k-fold
cross-validation process. Data were randomly split
into 10 (k = 10) non-overlapping subsets of approx-

N C

Σ Σ
i=1 j=1

Figure 2 Original RGB image.

xi – μ
s

1
(2π)d/ 2 σ d Nj

Nj

Σ
i=1

1
1+||x – xi||2/σ 2
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imately equal size. The PNN was trained on the k-1
of these subsets (training set), combining the sub-
sets’ features using the “exhaustive search”
methodology and was tested with the 1 remaining
subset (testing set) to obtain an estimate of the clas-
sification error.18 Exhaustive search was carried out
to determine the best feature-vector combination
that led to the maximum classification accuracy.19

The best feature combination was regarded that
which gave maximum classification accuracy with
the least number of features.

System Operation. The designed system operated
on a new case’s digitized images extracted from
high-power fields of the case’s specimen according
to the following steps:

1. Images were automatically segmented.
2. Nuclei were identified, and the optimal set of

features was calculated from each nucleus.
3. Nuclei were labelled by the PNN as brown or

blue.
4. The case’s ER status was calculated and a score

was determined, indicating the response to en-
docrine treatment.

System Evaluation

The results of the proposed system were evaluated
against the physician’s findings in terms of nuclei
classification, ER status and case score for response
to endocrine treatment. 

System nuclei classification accuracy was as-
sessed by the physician, who examined a large
number of nuclei that were labeled brown and blue
by the system and evaluated the system’s precision
by relation (equation 4):

% Accuracy = × 100 (4)

where TP are nuclei correctly categorized by the
system and FN are misclassified nuclei. 

The system’s ER status proximity to the physi-
cian’s assessment was tested by means of the 
Kolmogorov-Smirnov20 nonparametric test. The
agreement of the system’s case score to the physi-
cian’s score, using the scoring system of Table I, was
examined by means of the Kendall’s coefficient of
concordance21 (KCC).

Results

In the preliminary stage of nuclei segmentation by
the FCM (see Nuclei Segmentation by FCM section),
2,057 objects were segmented, of which 89.3% were
identified by the physician as nuclei (714 brown
and 1,117 blue). These nuclei constituted the gold
standard for the design of the PNN classifier. The
classifier was optimally designed by the exhaustive
search and the k-fold cross-validation methods (see
Nuclei Classification by PNN section). Feature combi-
nations that gave the mean maximum accuracy (av-
erage of 100 repetitions of 10-fold cross-validation)

Figure 3 Segmented (A) brown and (B) blue nuclei. White encircled nuclei, while initially incorrectly estimated as blue by the FCM, were
correctly classified as brown by the PNN.

TP
TP + FN

A B
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for each exhaustive search step (i.e., combination
per 2, 3, 4, 5 and 6) are shown in Figure 4. The mean
maximum accuracy gradually increased from
94.22% (2 features) to 95.48% (6 features). Due to 
insignificant variations in accuracies, the best 4-
feature combination was chosen for the design of
the PNN and comprised the mean value of red
channel, mean value of blue channel, range of green
channel and range of blue channel.

Regarding the evaluation of the system for nuclei
classification, the physician examined the system’s
output in characterizing 513 nuclei taken from 3 ar-
bitrarily selected images that had not been em-
ployed in the design of the PNN (last 10 cases in
Table II). Table III shows the system’s overall accu-

racy (91.4%) in correctly discriminating brown nu-
clei from blue nuclei. Moreover, in order to assess
the accuracy of the proposed system in estimating
the proportion of nuclei in individual cases, a com-
parative evaluation with the physician was per-
formed. Accordingly, the physician determined
manually the number of brown nuclei and blue nu-
clei that were contained in the digitized images of
the 10 cases not involved in the design of the sys-
tem. The system’s accuracy ranged between 88.4%
and 96.8%, with mean 92.9 ± 2.8%, based on an av-
erage of 310 nuclei per case.

Concerning system performance for ER-status 
assessment, the Kolmogorov-Smirnov test revealed
that there were no statistically significant diver-
gences from the physician’s evaluations (p = 0.13).
Table II presents the ER status scores. 

Finally, the level of agreement between the sys-
tem and the physician in assigning scores to cases
that indicated the response to endocrine treatment
can be estimated from Table II. Overall, agreement
existed in 90.63% of the cases and in particular in
100% (5/5), 85.7% (6/7) and 90% (18/20) for levels
2, 3 and 4, respectively, of the scoring protocol. The
KCC test showed a strong agreement (W = 0.898,
p < 0.001).

Discussion

ER status is reported as an important variable for

Table II Comparative Evaluation of the ER Status and Score
Between the Expert Physician and the Proposed System

Physician’s System System’s
evaluation evaluation Physician’s ER

Case (%) (%) ER score score

1 40 37.02 3 3
2 70 63.41 4 3
3 80 77.28 4 4
4 90 77.38 4 4
5 70 72.63 4 4
6 70 74.21 4 4
7 90 93.62 4 4
8 70 67.27 4 4
9 30 15.61 2 2
10 40 36.19 3 3
11 30 29.35 2 2
12 40 42.66 3 3
13 60 37.00 3 3
14 20 19.41 2 2
15 40 28.11 3 2
16 70 78.08 4 4
17 80 74.02 4 4
18 90 88.87 4 4
19 90 87.54 4 4
20 30 17.49 2 2
21 70 73.05 4 4
22 90 88.00 4 4
23 80 77.82 4 4
24 30 16.48 2 2
25 50 64.80 3 3
26 60 33.56 3 3
27 80 67.42 4 4
28 80 52.31 4 3
29 90 67.67 4 4
30 90 85.77 4 4
31 90 72.76 4 4
32 85 79.53 4 4

ER = estrogen receptor.

Figure 4 Variation of highest PNN precision in classifying
nuclei against the number of features employed. The span of
accuracies refers to the ranges of accuracies achieved by the 
10-fold cross-validation method. Also shown (inset) are best
feature combinations. m = mean, r = range, s = SD, skew =
skewness, R = red channel, G = green channel, B = blue
channel.
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prognostic and predictive evaluation of breast can-
cer.2,3 In everyday clinical routine, ER status is esti-
mated as the percentage of positively stained nuclei
to the total number of nuclei in the specimen, usu-
ally performed by visual inspection of regions with
high concentration of positive nuclei. The necessity
for standardization of the post-analytical scoring
and quantification of ER status by means of IHC
staining is still an open field of research.22 A diver-
sity of image analysis methods, such as commer-
cially available packages and custom made algo-
rithms, have been studied for the quantification of
IHC-stained sections.5-7,9,10 In the present study, a
high performance computer-based system is pro-
posed for the objective identification of the ER sta-
tus of breast carcinomas, incorporating state-of-
the-art pattern recognition methods (a clustering 
algorithm in cascade with a PNN classifier) and
color textural features.

Nuclei were initially segmented by employing
the FCM unsupervised algorithm using as features
the chromaticity, a* and b*, of the L*a*b* color
space.23 Evaluation of the segmentation stage re-
vealed that the system identified correctly 89.3% of
the nuclei, which is in line with the findings of 
previous studies.24-27 For increasing the precision, 
a PNN classifier was employed, in cascade with the
FCM. The PNN was optimally designed from infor-
mation obtained from the FCM (textural features
from segmented nuclei). The PNN looked at the re-
sult of the FCM and refined the nuclei segmentation
process by reassigning them to either brown or blue
classes. This measure increased nuclei classification
accuracy to about 95% (Figure 4) and the agreement
with the physician on characterizing nuclei as
brown or blue to 91.4% (Table III). In addition, the
system’s accuracy in determining the proportion of
brown or blue nuclei in individual cases was 92.9%,
with an SD of 2.8%. The result of the nuclei seg-
mentation procedure is shown in Figure 3. As it
may be noted, encircled nuclei that were falsely la-

beled blue by the FCM were in turn correctly char-
acterized as brown by the PNN.

The proposed system’s quantification of ER sta-
tus was compared against the histopathologist’s 
reported semiquantitative assessment, revealing a
high degree of correlation (Spearman’s r = 0.87).
Corresponding findings in earlier studies5-9 have
shown different degrees of correlation ranging
from satisfactory (such as Spearman’s r = 0.64 in8) to
high (such as pairwise κ = 0.84 in5,6) between their
image analysis methodologies and the physicians’
assessments. It must be noted that it is difficult to
draw concrete conclusions regarding direct com-
parisons between systems due to the absence of re-
liable and universal gold standards.

The performance of the proposed system was
also evaluated by means of a 5-scale ER ranking
clinical protocol, which gives the probability of
each case’s response to endocrine treatment. High
agreement was found with the physician’s score (29
of 32 cases [90.6%] and KCC = 0.898, p < 0.001). The
wrongly ranked cases may be due to the variability
in the staining among cases. Previous studies have
also reported results by means of various ER rank-
ing protocols. Schnorrenberg et al7 have indicated
up to 84% overall accuracy in correctly ranking
their cases to the H-score. Lehr et al10 have present-
ed adequate correlation (r = 0.76) of computer-
based immunostaining intensity with enzyme im-
munoassay findings.

In conclusion, the proposed system operates in
an automatic manner, achieving high accuracies
even when engaged in new cases. This may be in-
dicative of the system’s capability for application in
a clinical environment. The high rate of accuracy
may be attributed to interfacing in cascade a clus-
tering algorithm with a PNN classifier for charac-
terizing nuclei and, thus, for quantifying with pre-
cision each case’s ER status. The system has the
potential to serve as an operator-independent sup-
port opinion tool in clinical practice.

Appendix 

According to the Commission International de l’E-
clairage, the coordinates of the L*a*b* color space
are derived by a nonlinear transformation of the 3
primary colors X, Y and Z. The linear transforma-
tion of RGB space to X, Y and Z is defined as:28

X 0.607 0.174 0.200 R
Y = 0.299 0.587 0.114 G
Z 0.000 0.066 1.116 B

Table III Comparative Evaluation (Physician vs. System) in
Characterizing Nuclei as Brown or Blue, Employing 3
Arbitrary Selected Images from Different Cases not
Involved in the Design of the System

Physician

System Brown Blue Accuracy (%)

Brown 183 23 88.83
Blue 21 286 93.16
Overall accuracy 91.42

( ( () ))
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L* = 116   – 16

a* = 500 –

b* = 200 –
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